当前位置:首页 > python > 正文

python从PDF中提取数据的示例


pythonPDF提取数据的示例

这篇文章主要介绍了python从PDF中提取数据的示例,帮助大家提高办公效率,感兴趣的朋友可以了解下

01

前言

数据是数据科学中任何分析的关键,大多数分析中最常用的数据集类型是存储在逗号分隔值(csv)表中的干净数据。然而,由于可移植文档格式(pdf)文件是最常用的文件格式之一,因此每个数据科学家都应该了解如何从pdf文件中提取数据,并将数据转换为诸如“csv”之类的格式,以便用于分析或构建模型。

在本文中,我们将重点讨论如何从pdf文件中提取数据表。类似的分析可以用于从pdf文件中提取其他类型的数据,如文本或图像。我们将说明如何从pdf文件中提取数据表,然后将其转换为适合于进一步分析和构建模型的格式。我们将给出一个实例。

python从PDF中提取数据的示例

02

示例:使用Python从PDF文件中提取一个表格

a)将表复制到Excel并保存为table_1_raw.csv

python从PDF中提取数据的示例

数据以一维格式存储,必须进行重塑、清理和转换。

b)导入必要的库

  import pandas as pd  import numpy as np

c)导入原始数据,重新定义数据

  df=pd.read_csv("table_1_raw.csv", header=None)  df.values.shape  df2=pd.DataFrame(df.values.reshape(25,10))  column_names=df2[0:1].values[0]  df3=df2[1:]  df3.columns = df2[0:1].values[0]  df3.head()

python从PDF中提取数据的示例

d)使用字符串处理工具进行数据纠缠

我们从上面的表格中注意到,x5、x6和x7列是用百分比表示的,所以我们需要去掉percent(%)符号:

  df4['x5']=list(map(lambda x: x[:-1], df4['x5'].values))  df4['x6']=list(map(lambda x: x[:-1], df4['x6'].values))  df4['x7']=list(map(lambda x: x[:-1], df4['x7'].values))

e)将数据转换为数字形式

我们注意到列x5、x6和x7的列值数据类型为string,因此我们需要将它们转换为数值数据,如下所示:

  df4['x5']=[float(x) for x in df4['x5'].values]  df4['x6']=[float(x) for x in df4['x6'].values]  df4['x7']=[float(x) for x in df4['x7'].values]

f)查看转换数据的最终形式

  df4.head(n=5)

python从PDF中提取数据的示例

g)导出最终数据到一个csv文件

  df4.to_csv('table_1_final.csv',index=False)

以上就是python从PDF中提取数据的示例的详细内容,更多关于python 提取PDF数据的资料请关注本站其它相关文章!

标签:
上一篇: 下一篇:

暂无评论

发表评论

不理你。 不要啊! 吃饭。 吃惊。 吃西瓜。 飞吻! 恭喜! Hi 纠结! 膜拜! OK 抛媚眼。 泡泡糖。 抛钱。 忍! 生闷气! 调皮。 偷看。 委屈。 献花。 疑问? 抓狂!

小提示:Ctrl+Enter快速提交助您一臂之力~
加载中……